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Abstract
How to predict and better understand the effective properties of disordered material mixtures
has been a long-standing problem in different research fields, especially in condensed matter
physics. In order to address this subject and achieve a better understanding of the
frequency-dependent properties of these systems, a large 2D L × L square structure of resistors
and capacitors was used to calculate the immittance response of a network formed by random
filling of binary conductor/insulator phases with 1000 � resistors and 10 nF capacitors. The
effects of percolating clusters on the immittance response were studied statistically through the
generation of 10 000 different random network samples at the percolation threshold. The
scattering of the imaginary part of the immittance near the dc limit shows a clear separation
between the responses of percolating and non-percolating samples, with the gap between their
distributions dependent on both network size and applied frequency. These results could be
used to monitor connectivity in composite materials. The effects of the content and structure of
the percolating path on the nature of the observed dispersion were investigated, with special
attention paid to the geometrical fractal concept of the backbone and its influence on the
behavior of relaxation-time distributions. For three different resistor–capacitor proportions, the
appropriateness of many fitting models was investigated for modeling and analyzing individual
resistor–capacitor network dispersed frequency responses using complex-nonlinear-least-
squares fitting. Several remarkable new features were identified, including a useful duality
relationship and the need for composite fitting models rather than either a simple power law or a
single Davidson–Cole one. Good fits of data for fully percolating random networks required
two dispersive fitting models in parallel or series, with a cutoff at short times of the distribution
of relaxation times of one of them. In addition, such fits surprisingly led to cutoff parameters,
including a primitive relaxation or crossover time, with estimated values comparable to those
found for real dispersive materials.

1. Background and introduction

Electrical and optical properties of disordered systems
have been the focus of both theoretical and practical
work [1–3]. Disordered, inhomogeneous structures have
physical properties determined by the properties of the
constituents and the microstructure or microgeometry of the
composite system. Studies on the steady state properties of
such systems have been performed in great detail [2, 4–9].
Little attention has been given, however, to the frequency-

dependent properties of disordered systems [10–12]. In
regular/ordered and dilute mixtures (concentrations far away
from a percolation threshold), the frequency-dependent
dielectric response is expressed as a Debye-like relaxation [12].
But near percolation non-Debye dispersive responses are
observed [10–12].

In nature, nearly all experimental frequency-response
data for a wide variety of both dielectric and conductive
materials exhibit dispersive response involving fractional
power-law (FPL) dependence over appreciable frequency
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ranges. Such dispersive behavior has often been characterized
as ‘universal dielectric response’ or, more generally, as
‘universal dynamic response’. Reference [13] provides a
detailed discussion of its provenance and of its limited
applicability as a general fitting model. More generally, [14]
divides theoretical data interpretations into three categories,
‘relaxation-time distribution analysis, many-body effects on
relaxation processes, and electrical network analysis’. The
authors of [14] also emphasize the ubiquity of FPL and
the need to account for its presence in the response of real
materials.

Much valuable work investigating the behavior of two-
dimensional (2D) networks of randomly positioned resistors
and capacitors (RC) appears in [10] and [14–16]. References
to even earlier work on the subject are provided in [10]. Other
relevant work dealing with FPL, effective-medium theories,
and random binary composites appears in [2, 5, 8, 9, 11, 12]
and [17–41]. In [14] it is pointed out that real conducting
materials exhibiting microstructural heterogeneity involve a
complex network of conduction paths and thus should behave
as a bond-percolation network of conducting and capacitative
regions, with consequent FPL response. An important 1974
paper on the bond theory of infinite clusters [42] shows the
relation of this theory to hopping conduction. Disordered
binary composites, conducting polymers, dielectrics, ion-
conducting glasses, and random RC networks (RRCN) should
therefore all exhibit FPL response and indeed do so. Most work
using RRCN models has therefore emphasized their generation
of limited-range FPL response at the cost of more detailed
attention to full-range behavior and to deviations from FPL
response. This lack is addressed by the results of the present
work.

The number of nodes of a binary square network is given
by L × L, resulting in 2 × L × L total components for full
occupancy. Define P as the number of capacitors and (2× L ×
L − P) as the number of resistors; thus p ≡ P/2 × L × L is
the capacitative fraction. We may then represent the percentage
occupancy of a network as 100p and 100(1 − p), and for
simplicity list it as either 100p/100(1− p) or p%C(1− p)%R.
The percolation threshold value is p = pc = 0.5. A diagram of
a typical 10×10 network appears in [10]. Much of past RRCN
work has been carried out with the L = 16 choice, but in
[15] the effect of increasing L up to 128 has been investigated.
Since some change in response still appears between this value
and smaller ones, the present work involves comparison of
results for L = 128, 256, and 500. For the L = 500 value,
its number of 500 000 total components is thus more than 15
times larger than that for L = 128. Although 3D RRCN
studies have been carried out (e.g., [2, 5c, 29]), the present
work is restricted to the simpler 2D situation since the 3D
studies ‘are found to be qualitatively the same as those of 2D
network simulations’ [10].

Although critical phenomena (percolation behaviors) are
similar for 2D and 3D systems, characteristic geometrical de-
scriptions and electromagnetic interactions are different. The
geometrical description can be understood by considering the
nodes–links–blobs picture for a percolating network [42–44].
This model describes the percolating backbone by a multiple

combination of nodes and links followed by a self-similar dis-
tribution of blob connections and dangling bonds along the
chain. The model was successfully used to describe the change
in the electric conductivity of a polymer composite during the
mixing process [45]. The backbone within its multiple-blob
connections behaves as a fractal object and thus has a fractal
dimension. The disordered fractal structure has a dominant ef-
fect on the determination of the physical properties; this effect
will be discussed in section 2.

Percolation in continuous binary mixtures was previously
studied by solving Maxwell equations in the quasi-static
limit [8, 32, 33]. In those simulations it was explicitly shown
that, depending on the material parameters and geometrical
description, different types of relaxations could be observed
in mixtures [11, 12]. In a previous investigation, one of
us studied all possible geometrical arrangements in a binary
mixture with square tiles on a 4 × 4 lattice and showed the
influence of the geometrical arrangement on the dielectric
dispersion [34]. Here, a much larger scale is considered for
RC network structures.

In [10, 16], the logarithmic mixing rule [36] is shown to
lead for 2D RRCN situations to the FPL responses σ(ω) ∝
(iω)p and ε(ω) ∝ (iω)p−1, where, as defined above, p is
the proportion of the capacitative elements of the network.
In the present work we make no distinction between original
data sets and their specific form; thus σ ′ has the dimension of
Siemens, sometimes written ‘mho’. In the higher-frequency
region where RRCN behavior is expected to be of FPL form,
the mixing rule predicts that its fractional exponents, equal to
the log–log slopes of the above responses, should be p and
−(1 − p) for σ ′(ω) and ε′(ω), respectively. As we shall
find, however, these results are only approximate when p
differs appreciably from its critical p = pc ≡ 0.5 percolation
threshold value where a kind of metal–insulator transition
occurs.

The main goal of this work is to explore how well
the conductive and dielectric dispersive responses of random
mixtures and other inhomogeneous real materials may be
modeled by the RRCN approach. It is well known
that a distribution-of-relaxation-times (DRT) approach and
dispersive response models consistent with it may be
successfully used to model both conductive and dielectric
experimental data (e.g., [13, 37–41]). Central aims of the
present work are to explore the statistical behavior of highly
replicated, large RRCN models at the 50/50 percolation
threshold, as well as the degree to which the frequency
response of p = 0.5 and p �= 0.5 models involves FPL
behavior and may be well represented by dispersive models
used in the past to best fit the response of disordered real
materials. The statistical study is presented in section 2, and
in section 3 and the appendix we discuss the results of an
investigation carried out with complex-nonlinear-least-squares
(CNLS) fitting of individual simulated RRCN data sets at and
on either side of the percolation threshold.

2. Statistical investigation results for p = pc

In this section we present numerical results for the immittance
responses of highly replicated 2D RC-square networks. The
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Figure 1. Complex-plane impedance and relative permittivity plots for 18 different RRCN samples at the 50/50 percolation threshold.

system, of maximum size 500 × 500, is composed of a random
distribution of R = 1000 � resistances and C = 10 nF
capacitors with proportions equal to the 2D 50/50 percolation
threshold. The immittance response for each replication of the
network is calculated from 1 Hz to 1 GHz using the efficient
Frank–Lobb reduction algorithm [30, 31]. The RRCN may be
considered a bond percolating circuit structure and undergoes
a metal–insulator transition at the percolation threshold where
a percolating path between the electrodes may appear. The
relation ε(ω) = σ(ω)/(iωεV) is used here for transformation
between dielectric and admittance quantities, where εV is the
permittivity of vacuum.

Figure 1 shows 18 different 2D 50/50 RRCN complex-
plane responses that demonstrate remarkably well the
transition from dominant conductive to dominant dielectric
response. Either of these types are possible even for this
percolation threshold choice because of the random placement
of the equal numbers of resistors and capacitors of each
network sample. Here the concave-arc lines of figure 1(a)
involve conductive percolation-backbone response between
the electrodes, while those of figure 1(b) are of dielectric
percolation-backbone character. They both reach the x-axis
at the right at zero frequency. The convex lines of figure 1(a)
involve percolating dielectric behavior and those in figure 1(b)
show percolating conductive behavior. As the figure shows,
the 18 replication results exhibit appreciably different values
of the percolating ρ0 ≡ 1/σ0 and ε0 low-frequency-limiting
values of ρ ′(ω) (Z ′(ω) in figure 1(a)) and ε′(ω): the relaxation
strengths of the dispersions at the conductive and dielectric
levels, respectively. Thus, a much larger replication number
is needed to obtain statistically significant results.

In the dc limit, the phase exhibited by RRCN structures
depends on the presence or absence of electrode-to-electrode
backbones. In the absence of a backbone of either resistive
or capacitative character and also in the presence of one or
more capacitative backbones, the phase at the admittance level
will be 90◦, while in the presence of one or more resistive
backbones, the phase will be zero. Because the present
data extend only down to 1 Hz, we cannot expect exact dc
results at this frequency, but the 1 Hz results are used here as
approximate surrogates for actual dc ones.

Figures 2–5 present results at 1 Hz for 10 000 replications
of RRCN structures of three different sizes at the percolation

Figure 2. Distributions of −Z ′′(1 Hz) and Z ′(1 Hz) responses for
104 50/50 samples and three different network sizes.

threshold. Note the appreciable size effects, especially near
the zero-frequency limits. For the real part of the impedance,
figure 2(b) shows that approximate log-normal distributions
are evident, ones whose widths increase with the size of the
network. In the dc limit the values of the x-axis resistive
quantity, Z ′(1 Hz), are directly related to the number of
conductive backbone paths that connect the electrodes.

For the 500 × 500 structure, the shortest (straight-line)
single percolating conductive path between the electrodes leads
to a backbone resistance of 5 × 105 �. Longer conductive
paths would lead to larger values, and all 500 minimum-length
resistive backbones in parallel would yield 1000 �. But such
a structure, of nearly vanishing probability, would require
the presence of all 500 capacitances in bridging (horizontal)
positions, ones with no effect in the dc limit. For x-axis values
of less than 5×105 �, more than one backbone must be present,
while for greater values one or more longer than minimum
backbone paths connecting the electrodes would be necessary.
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Figure 3. Scattering and distributions of Z ′(1 Hz) and −Z ′′(1 Hz)
responses for 104 50/50 samples at the 500 × 500 network size. To
account in part (b) for both the main distribution and the narrow one
at the bottom, the upper right x-axis scale is broken to provide two
separate scale sizes.

Note that the presence of even one capacitance replacing
a resistance element in a conducting backbone would render
it non-conducting and destroy percolation for that path. Paths
with one or more such conductive breaks yield dielectric rather
than conductive dispersion. As shown by comparison of the
y-axis scales of figures 2(a) and (b), the proportion of samples
with dielectric behavior is much greater than conductive ones,
and it reflects the dominance of the capacitive effect in the
immittance response throughout the whole number of samples.
So, we can predict two main behaviors.

(i) Conductive dispersions induced by an integral resistive
path leading to a non-zero σ0. Only for networks of
p < 0.5 configuration, however, does a high-frequency-
limiting σ∞ quantity also appear.

(ii) Dielectric dispersions that involve either series capacita-
tive elements in a resistive path or the presence of integral
capacitive paths. Both types lead to a non-zero static per-
mittivity ε0 but only those with p > 0.5 also include a
high-frequency-limiting permittivity ε∞.

Figure 2(a) shows the presence of two separate
distributions of the imaginary part of the impedance. The
first one, at the smallest values of Z ′′(1 Hz), reflects the
proportion of the samples with an integral resistive backbone,
those leading to conductive dispersion. The second type
of distribution is of much broader log-normal character
and represents the proportion of samples with a dielectric
dispersion caused essentially by the presence of one or more
capacitive inclusions in the resistive backbone. These two
distributions are separated by a range of improbable values of
Z ′′(1 Hz). The length of the resulting gap depends on the
size of the system and increases with the value of L. The
minimum value of the real-part impedance results of figure 2(b)
also increases with the size of the system and its log-normal
distribution correspondingly broadens.

The scattering of the values of the real and imaginary part
of the impedance and permittivity is plotted in figures 3 and 4,
clearly demonstrating the gap in both quantities. Furthermore,
an interesting plot of the phase angle of the admittance is
presented in figure 5 and clearly reflects the gap between the

Figure 4. Scattering and distributions of ε′(1 Hz) and ε′(1 Hz)
responses for 104 50/50 samples at the 500 × 500 network size. To
account in part (b) for both the main distribution and the narrow one
at the bottom, the upper right x-axis scale is broken to provide two
separate scale sizes.

Figure 5. Scattering and distributions of phase angle at 1 Hz for 104

50/50 samples at the 500 × 500 network size.

capacitive behavior characterized by δ ≈ π/2 and the resistive
one, by δ ≈ 0. This gap is associated with a set of structures of
the network that involve improbable and essentially impossible
responses and so do not lead to phase values in its range.
But the width of the gap does seem to depend on the
geometrical structure of the network. Although the system is
composed only of capacitive and resistive elements, it allows
no intermediate response region but only responses distributed
near the exact dc phase values of 0◦ and 90◦. This behavior
may be a consequence of the geometry of the network, and
we suspect that the gap may be different for more complex
geometries than the square network, ones such as triangular,
honeycomb, or random.

In figures 6 and 7, distributions of complex resistivity and
permittivity at two different frequencies (1 Hz and 10 mHz) are
shown for simulations with 10 000 different RC configurations.
These results indicate that all the configurations show dc
response at these frequencies: conductive and dielectric
relaxations are finalized. It is trivial to separate percolating
and non-percolating configurations from the imaginary parts
of resistivity. Z ′′, and permittivity, ε′′; both yield two
different separations, and the results for the two different
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Figure 6. (a) The distribution of the imaginary resistivity −Z ′′
versus the real resistivity Z ′ for the 500 × 500 size lattice, calculated
from 10 000 different simulations. The simulations were performed
at the two frequencies, 1 Hz (open symbols) and 10 mHz (filled
symbols). The structures with finite and infinite clusters can be
visualized easily: low −Z ′′ means that the structures are less resistive
due to percolation. The shift in the −Z ′′ for the two considered
frequency cases is due to capacitive impedance, (ωε′)−1, where ε′ is
the capacitance of the random structure. (b) The number density of
the Z ′-distribution of the non-percolating (finite) and percolating
(infinite) clusters for the 10 000 cases presented with solid lines and
the dashed lines represent the sum of two distributions. Observe that
the two frequencies lead to very similar Z ′ distributions. (c) The
number density of the −Z ′′ distribution of the non-percolating
(finite) and percolating (infinite) clusters. A clear separation between
−Z ′′ distributions is significant in this representation. This splitting
occurs only at p = pc and near the DC limit and depends on the size
L and the frequency. It demonstrates the probabilistic character of
the geometric percolation: i.e., due to the structure and the content of
the backbone not all the samples are conductive at p = pc.

frequencies have two-decade shifts corresponding to the ratio
of the considered frequencies, and dependent on the size of the
system as expected.

The results shown in figures 6 and 7 indicate that
decreasing the frequency (near dc) tends to separate structural
differences more significantly: note especially the two
distributions in the imaginary part. A comparison of
the current results to a similar study with a small tile
structure [33] demonstrates the importance of near dc condition
in differentiating between percolating and non-percolating
structures.

As the frequency decreases, the distribution of percolating
structures tends to shift toward lower Z ′′ values and the
opposite is found for the distribution of non-percolating
structures. For the epsilon level, however, these shifts are
reversed such that the frequency dependence of the capacitive
component contributes more to the total response. For a non-
percolating structure as the frequency decreases toward zero
we see an increase in the polarization of the dielectric bonds,

Figure 7. The distribution of the imaginary permittivity ε′′ versus the
real permittivity ε′ for the 500 × 500 size lattice, calculated from
10 000 different simulations. The simulations are performed at the
two frequencies, 1 Hz (open symbols) and 10 mHz (filled symbols).
The structures with finite and infinite clusters can be visualized
easily: low ε′′ means that the structures are less resistive due to
percolation. The shift in ε′′ for these cases is due to resistive part of
the impedance, (ωZ ′)−1, where Z ′ is the resistivity of the random
structure. (b) The number density ε′—distribution of the
non-percolating (finite) and percolating (infinite) clusters for the
10 000 cases presented with solid lines, and the dashed lines
represent the sum of finite and infinite clusters. The two frequencies
lead to the same ε′ distributions. (c) The number density of ε′′
distribution of the non-percolating (finite) and percolating (infinite)
clusters. A clear splitting occurs only at the pc value and near the DC
limit in the ε′′ distributions. This separation, which depends on the
size L and the frequency, shows the probabilistic character of the
geometric percolation: i.e., due to the structure and the content of the
backbone not all of the samples percolate at p = pc.

which leads to lower values of ε′′ and higher ones for Z ′′. On
the other hand, percolating structures show lower values of Z ′′
and higher ε′′ ones, due to non-zero dc conduction.

It follows from these results that increasing the frequency
tends to bring the two distributions together until they overlap
at sufficiently high frequencies. Our results also indicate
that not all of the 10 000 samples percolate even when the
50/50 condition is well reached. In fact, the majority of
the samples then involve non-percolating behavior, confirming
the dominant effect of the dielectric bonds on the structure
of the backbone. The real parts of the resistivity, Z ′, and
permittivity, ε′, on the other hand yield similar distributions for
the two frequencies considered. There is no clear separation
between the percolating and non-percolating configurations.
However, the percolating configurations result in low dielectric
permittivity ε′ and high resistivity Z ′ values, confirming the
findings in Tuncer et al [34].

The present results emphasize the importance of the
content and structure of the percolating backbone in the
determination of the nature of the immittance response.
The various RRCN at the percolation threshold showed
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different dispersions. We thus conclude that these different
RRCN combinations had a variety of percolating backbone
structures. Considering the nodes–links–blobs model and the
self-similar distribution of the resistance blobs, these varieties
of percolating backbones should have different fractality and
lengths which can affect the properties of the whole system.
The effect is not restricted to the static regime but is also
present in the dynamic ones where the relaxation process is
influenced by the geometrical disposition and the connectivity
of the components.

In analogy to real materials, the same effect can
be observed by changing the synthesis process of an
inhomogeneous material. This process can influence
the nucleation growth, segregation, diffusion, and cluster
formation. It can thus lead to different structures with diverse
fractal dimensions and dispersions that reflect the morphology.
It is well known that tuning the electric conductivity and the
proportion of the components can enhance the static effective
conductivity of the system. Further, tuning the morphology and
fractal geometry of the components can provide more control
of the physical properties in the dynamic regime.

The dispersions for both states shown in figure 1
demonstrate that the relaxation processes obey a non-
exponential law. Such non-Debye behavior involves DRTs
that may be used to describe the polarization processes of
many disordered systems and can be represented by such
models as the DC, KD, K0, and K1 ones described and
used in section 3. Another example is the derivation by
Nigmatullin et al [46] of Davidson–Cole (DC) model [41, 47]
response by considering a self-similar relaxation process. They
assumed that macroscopic relaxation involved the relaxation
of an enormous number of elementary components on the
microlevel. The distribution of these components over a fractal
geometry led to a fractal distribution of relaxation times. They
then obtained the DC model for the complex susceptibility
through the analytic derivation of a fractional-order differential
equation for the relaxation function. Finally, the DC model
exponent was shown to be related to the fractal dimension of
the distributed temporal response.

The approach of [46] is reasonable since it is well known
that percolating backbones are self-similar and have been
treated as fractal objects in different works [2, 24]. The fractal
concept has been explicitly applied to microemulsions and
their dielectric properties have been investigated by different
scientists. For example, Van Dijk et al [48] investigated
the dielectric properties of microemulsions at the percolation
threshold and found scaling behavior in agreement with the
predictions of percolation theory. Somewhat later, Clerc and
co-authors [2] interpreted Van Dijk’s results explicitly in terms
of a RC model in a percolating geometry.

Feldman et al [49, 50] used the dipole correlation function
for microemulsions, one which exhibits non-exponential
behavior in the percolation region. To represent experimental
correlation-function temporal response of microemulsions they
used a sum of two stretched exponentials terms and related
their parameters to the structure of the system, reflecting
the cooperative behavior of microemulsion droplets near
the percolation threshold. Since the dispersive response

of a RRCN structure is governed by the electrical current
interactions between all of its interconnected elements, one
expects that the random distribution of such elements over
the network might model the dipole–dipole electrical field
interactions or the ion–ion correlations in real disordered
materials. In section 3 and in the appendix we explore how
well models known to fit dispersed frequency response in
such materials actually fit RRCN response for three types of
structures with the choices p = 0.4, 0.5, and 0.6.

3. Summary of CNLS fitting of individual RRCN
data sets for p = pc and p �= pc choices

Many different fitting models have been employed, using the
free LEVM CNLS computer program [51], to fit specific
2D RC-square-network data sets in order to find best fitting
choices and to best interpret the physics of the responses.
Tables A.1 and A.2 of the appendix show representative
proportional-weighting fitting results for models that led to the
best fits of five data sets, all derived from the responses of
500×500 RC networks. Here we discuss the main conclusions
that follow from these fits.

In 1999 Almond and Vainas [10] pointed out a remarkable
similarity between the dielectric response of 2D RRCN
response and that of the dielectric-level DC model [41], one
that has been widely used to fit dielectric materials, conducting
polymers, and even a L = 16 network of binary dielectric
mixtures [33]. In addition, DC response can appear from
the presence of self-similar relaxation processes [46], as
discussed in section 2. The concave dielectric curves of
figure 1(b) are of approximate DC shape, shown by Lindsey
and Patterson [47] to be similar to the important dielectric-
level Williams–Watts–Kohlrausch model, here designated the
KD model and derived from dispersive stretched-exponential
temporal response [13, 37–40], widely observed behavior.

Similarly, the concave conducting curves of figure 1(a) are
also of approximate Davidson–Cole shape when this model is
defined at the impedance level. When the dielectric-level KD
model is defined at that level, it is designated the K0 one and
is also of approximate impedance-level DC form. Although
simple expressions for the frequency-domain responses of the
KD and K0 models are unavailable, nevertheless they may
be accurately calculated and used for simulation and fitting,
as discussed below. Another very important conductive-
system model is the K1, related to the K0 by a simple
transformation [37–39].

The appropriateness of DC, KD, K0, K1, and other models
for fitting RRCN data is demonstrated in detail in the appendix.
Note that when the characteristic shape parameter of the DC
model, γ , with 0 < γ � 1, is equal to unity the DC
model simplifies to the Debye one, denoted here by DB. The
corresponding shape parameters of the KD, K0, and K1 models
are βD, β0, and β1, respectively. All these dispersed-response
models involve a characteristic relaxation time as well, one that
we shall just denote here by τ0.

There has been no CNLS fitting of 2D RRCN response
data with either the DC or KD model thus far, although the
DC has been used for approximate fitting of 3D dielectric-level

6



J. Phys.: Condens. Matter 21 (2009) 025904 R F Hamou et al

conductor–insulator composite data [35]. Since the complex-
plane results of figure 1 show that concave response curves
of DC or KD shape appear for both conductive-system and
dielectric-system responses, it is reasonable to fit these models
at both the dielectric level (then designated as DCD and KD)
and at the impedance one, where they are designated as DC0
and K0. The conductive models are of the same form as
the corresponding dielectric ones but involve distributions of
resistance-element relaxation times [38, 39]. For simplicity,
we shall usually use just the DC and DB designations for both
conductive and dielectric-level models and distinguish them by
identification of which DRT character they involve. Detailed
results of CNLS fitting of RRCN data samples for the p = 0.4,
0.5, and 0.6 choices using the DC, KD, DB, K0, and K1 models
are presented in the appendix.

The p = pc = 0.5 fits of table A.1 show that although
the use of a single fitting model is much inferior to composite
models, the single KD one was far superior to the DC one for
figure 1(b) dielectric behavior. Interestingly, composite models
with two individual ones in parallel or with two in series
led to comparable results with, for example, two parallel DC
models of dielectric character or series ones of dielectric and
conductive character such as the series DCDB combination.
Although the fits of table A.1 involve either dominant dielectric
or dominant conductive response, the best fits demonstrate for
the first time that in either case for each composite model one
of the two individual models involves a fractional exponent of
value very close to pc. These results, for both dielectric and
conductive situations, confirm the threshold character of the
p = 0.5 RRCN structures involved and, as well, show that for
the 50/50 configuration no high-frequency-limiting ε∞ and/or
ρ∞ quantities are needed in fitting data for such structures.

The 60/40 and 40/60 fits of table A.2 are of primary
dielectric or conductive character, respectively. But, unlike
the 50/50 results, the 60/40 ones require the inclusion of a
separate non-zero ε∞ fitting parameter and the 40/60 ones
include a non-zero ρ∞ one. These results indicate the presence
of unbroken percolation backbones between the electrodes.
Again, composite fitting models are superior to single ones,
but it was discovered by CNLS fitting that cutting off the KD
(60/40) or K0 (40/60) distribution of relaxation times at a
specific minimum τ value, τmin, led to much improved fits in
the high-frequency region of the data. This quantity is related
to the U cutoff parameter in table A.2 by τmin = τ0 exp(U),
where U is generally negative.

Although separate high-frequency-limiting fitting param-
eters are needed for the dominantly dielectric 60/40 situation
and for the dominantly conductive 40/60 one, as shown in the
appendix, cutoff of the KD DRT leads to the additional pres-
ence of ρ∞ response and cutoff of a K0 model DRT corre-
spondingly generates ε∞ response [52]. Thus, when p �= pc,
the present CNLS data fitting confirms that both types of high-
frequency-limiting quantities are intrinsic contributors to the
data, are accounted for in the good composite model fits, and
both disappear as p → pc. Further, both the dielectric and
conductive 50/50 fittings led to a fractional exponent whose
estimated value was very close to pc. This result was not as
interesting, however, as those found on fitting with composite

models such as the 60/40 CKDKD composite dielectric model
or the 40/60 K0K0R conductive one. They both also led to one
part of the model with a fractional exponent again very close
to pc and the other part with fractional exponents of about 0.40
for the 60/40 situation and 0.6 for the 40/60 one, just as one
might expect but not previously demonstrated.

The need for a composite model to fit the RRCN dispersive
data could arise from the presence of two different fractal
processes. The first one could be attributed to the percolating
backbone between the electrodes. The second process might
represent dispersed clusters surrounding but not connected to
the backbone. These processes could be additive depending on
whether they are connected in series or in parallel. The two
fractal structures are self-similar and would contribute to the
response at different levels. Since the fractional power law is
directly connected to the fractal dimension of the structure, the
two structures would not be too different in terms of fractality.
In 1987 Niklasson demonstrated the effects of percolating
clusters and the clusters’ distribution on the dielectric response
by using a fractal scheme [53]. He later further discussed
the fractal aspect of dispersive response by connecting fractal
structure to dielectric response by means of a Davidson–Cole
function [54].

For real materials, one always needs a dipole-rotation ε∞
free fitting parameter, but only rarely is a ρ∞ one required.
Nevertheless, if the data extend to high enough frequencies,
fitting will always require cutoff of model DRTs even when an
explicit ρ∞ parameter is absent. In this respect, RRCN data
and its fitting parameters are similar to those of real materials
and we can thus learn from such data. Although there is no
limit to the smallness of ideal RRCN cutoff parameters, ones
which seem to decrease as the size of the network increases,
for real materials and networks involving finite-size elements,
the finite speed of light will eventually lead to a minimum
DRT relaxation-time cutoff value and to a resultant primitive
relaxation time, tc [52, 55, 56]. If the effective speed of light
is a limitation, the value of tc should increase as the separation
between electrodes increases.

The CNLS fitting results also led to two other important
conclusions. As shown in section A.3 of the appendix, a new
duality between fitting models for dielectric and conductive
response allows data and a fit for either one to be used to
obtain fit results and fit parameters for the other without the
need for actual fitting at the other level but only involves a
re-interpretation of the meaning of the original fit parameters.
This duality nearly doubles the applicability of the fitting
results of tables A.1 and A.2 of the appendix.

Finally, in section A.4 it is shown that the present
RRCN fitting results involving cutoff are consistent with the
Ngai coupling model and with the cutoff model [52–54],
both equivalent for real materials in the lower temperature
region but only the cutoff one physically appropriate for high
temperatures [54]. The coupling model involves a relation
between τ0, τe, and τc, where τe is the relaxation time
associated with the Debye response that appears above the
cutoff frequency, and the primitive relaxation time τc is often
taken to be about 2 ps for real materials. Interestingly, RRCN
estimates for τc were found to be somewhat smaller as well
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as somewhat larger than the 2 ps value but still of the same
order of magnitude. Thus again we find that the present RRCN
behavior is similar to that of real materials and can perhaps
help understand which properties of such materials are general
and which specific to the material.
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Appendix. Details of CNLS fitting results

Tables A.1 and A.2 show representative proportional-
weighting fitting results for models that led to the best fits of
five data sets, all derived from the responses of 500 × 500 RC
networks. Although good fits required a composite model with
more than one model in series or in parallel, some fits with
simpler models are included here to show the progression to
a best fitting choice. When exactly 50% of elements of each
type are present, the capacitor–resistor number ratio is unity
and p = pc = 0.5, the percolation threshold value for a
two-dimensional arrangement. For this situation, one might
expect to obtain results exactly at the transition from dielectric
to conductive behavior. But since the placement positions of
the elements are random, a specific realization, such as those
considered here, may yield either overall dielectric behavior or
overall conductive behavior, as illustrated in table A.1 for rows
1–5 and 6–11, respectively, and in figure 1. In addition to these
threshold data sets, rows 1–4 and 5–10 of table A.2 show fits
with 60/40 and 40/60 capacitor/resistor ratios, respectively.

A.1. 50/50-structure fit results

The simple DC model fit of table A.1, row 1, which involves
only three free parameters, yields the very poor fit value of
12.4% for 100SF, the per cent relative standard deviation of
the fit residuals. Here, however, the quantity PDRMS, the
rms value of the estimated relative standard deviations of
the parameters, has an acceptable value of 0.022, indicating
adequate estimation of the parameter values. Since both these
quality-of-fit measures should be simultaneously as small as
possible, the row-1 fit is unsatisfactory. In contrast, the KD
fit of row 2 is acceptable and leads to a very well determined
estimate of βD of 0.504, very close to the p = pc value of
exactly 0.5. Nevertheless, this fit can be appreciably improved.

Rows 3–5 involve composite fit models, the first two
with models in parallel at the dielectric level and the last
one with the models in series. The row-5 results yield not
only an excellent fit but also exceedingly well determined
parameter estimates with γa nearly identical to pc. Note
that here the series Debye model is of resistive rather than
dielectric character and involves a fixed γb value of unity.
Figure A.1 presents both complex dielectric plane and ε′′
frequency-response responses for the row 1–5 fits of table A.1.
The row 4 and row 5 fit curves are so close to those of the
data in both figures A.1(a) and (b) that they are not separately
shown. It is clear that although the simple KD fit is much

Figure A.1. (a) Complex-plane plot of individual ε response data,
fits, and separate parts of composite fitting models for a 50/50
network. (b) Log–log plot of ε′′(ν) for the same situations as in (a).
Here and in table A.2, a designation such as 1–4 refers to the fit listed
in the fourth row of table A.1. Here and elsewhere, νn is 1 Hz.

superior here to the DC one shown in these figures, the DC
model is a crucial part of the best-fit composite models. Also
shown are the responses of individual parts of the DCKD and
DCDB models.

Rows 6–11 of table A.1, for an overall conductive-
response data set at the percolation threshold, again show
that a single DC model leads to a poor fit, and parallel
composite models are needed to yield better fits. The row 11
parallel combination of an impedance-level DC model and a
DC dielectric one seems to be the best of the fits shown and
yields a value of γa properly near 0.5. Note that for this overall
conductive-type data, this value of γa is associated with a DC
model defined at the resistivity, not dielectric level. Also for the
fits of rows 5 and 11 the composite model significantly includes
parts defined at both the dielectric level and at the resistivity
one.

A.2. 60/40 and 40/60 fit results; effects of cutoff

The present dielectric-dominant 60/40 results of table A.2,
rows 1–4, all involve a free capacitance parameter denoted C
and listed as ε∞ in the table. Its inclusion, in parallel with the
KD model, is necessary to obtain adequate fits, but no separate
ρ∞ parameter is needed. The existence of non-zero values
of ε∞ demonstrates the presence of one or more dielectric
percolation backbones extending from electrode to electrode.
Similarly, the conductive-dominant 40/60 results of table A.2,
rows 5–10, all involve a free resistance parameter denoted R
and listed as ρ∞ in the table. Its inclusion, in series with the
K0 model, is necessary to obtain adequate fits, but no explicit
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Table A.1. Results of dielectric-level CNLS fitting of 2D 500 × 500 square-RC-network data sets at the percolation threshold. Data involve
dielectric (D), or conductive (C) character, and involve p% capacitors and (1 − p)% resistors, here equal to 50/50. A composite fit model,
such as KDKD (a and b parts), may involve series (S) connection or parallel (P) connection. KX models involve X = D (defined at the
dielectric level, E), or X = 0 or 1 (both defined at the impedance level, Z). DC denotes the Davidson–Cole response model (expressed at E or
Z level) and involving a γ fractional exponent. DB is E or Z type Debye response. The 1 F value in row 5 indicates that the DC model γb

shape parameter is fixed at 1, leading to Debye response.

#P or S;
E or Z

Fit model
a part
b part

100SF

PDRMS
ε0a or [ρ0a]
(�) τ0a (s)

βXa

or γa

ε0b or [ρ0b]
(�) τ0b (s)

βXb or
γb

1 E DC
D 50/50

12.4
0.0216

2.37 × 105 7.34 × 10−3 0.480 — — —

2 E KD
D 50/50

1.92
0.0031

2.22 × 105 2.77 × 10−3 0.504 — — —

3 P
E, E

KDKD
D 50/50

1.31
0.0147

1.18 × 105 9.83 × 10−4 0.496 1.05 × 105 6.80 × 10−3 0.683

4 P
E, E

DCKD
D 50/50

0.894
0.0251

1.15 × 105 1.76 × 10−2 0.459 1.08 × 105 1.11 × 10−3 0.531

5 S
E, Z

DCDB
D 50/50

0.718
0.0044

2.23 × 105 3.82 × 10−3 0.501 [1.57 × 105] 7.61 × 10−3 1 F

6 Z DC
C 50/50

4.34
0.0131

[5.14 × 105] 2.39 × 10−2 0.504 — — —

7 S
Z, Z

K1K0
C 50/50

0.961
0.0312

[4.42 × 105] 6.71 × 10−3 0.690 [9.11 × 104] 6.19 × 10−4 0.502

8 S
Z, Z

K0K0
C 50/50

1.47
0.0040

[4.87 × 105] 1.10 × 10−2 0.788 [4.50 × 104] 1.89 × 10−4 0.494

9 P
Z, E

K0KD
C 50/50

1.27
0.0119

[5.34 × 105] 2.32 × 10−3 0.547 1.61 × 105 2.53 × 10−3 0.551

10 P
Z, E

K0DC
C 50/50

1.34
0.0086

[5.32 × 105] 3.75 × 10−3 0.520 1.05 × 105 2.59 × 10−3 0.516

11 P
Z, E

DCDC
C 50/50

0.856
0.0235

[5.33 × 105] 2.01 × 10−3 0.509 2.73 × 104 1.32 × 10−3 0.647

Table A.2. Results of CNLS fitting of 2D 500 × 500 square-RC-network data sets at 60/40 and 40/60 occupation ratios. The 60/40 data set
fits were carried out at the E level and the 40/60 ones involved Z-level fits. C is the circuit symbol for ε∞ and R is that for ρ∞. Row 7 involves
K0 and R in series and the combination in parallel with KD. For rows 8–10 all three K0K0R elements are in series. Row 10 involves a
different random data set than do lines 5–9. If ε∞(ρ∞) is absent, then ε = ε0(ρ = ρ0).

#P or S;
E or Z

Fit model
a part
b part

100SF

PDRMS
εa or [ρa]
(�) τ0a (s)

βXa

or γa

εb or
[ρb] (�) τ0b (s)

βXb or
γb

−U
cutoff
param

ε∞ or
[ρ∞]
(�)

1 E CKD
60/40

7.31
0.0135

6.61 × 103 2.96 × 10−6 0.531 — — — — 172

2 E CKD
60/40

1.07
0.0019

6.47 × 103 2.79 × 10−6 0.503 — — — 8.66 189

3 S
E, Z

CKDK1
60/40

0.247
0.0225

6.49 × 103 3.20 × 10−6 0.528 [2.63 × 103] 2.97 × 10−6 0.457 8.60a 191

4 P
E, E

CKDKD
60/40

0.210
0.0162

4.09 × 102 4.36 × 10−7 0.574 6.09 × 103 3.06 × 10−6 0.511 8.73b 188

5 S
Z, Z

K0R
40/60

7.50
0.0139

[6.06 × 103] 3.17 × 10−6 0.531 — — — — [153]

6 S
Z, Z

K0R
40/60

0.963
0.0017

[5.93 × 103] 2.99 × 10−6 0.503 — — — 8.72 [168]

7 P
Z, E

K0RKD
40/60

0.536
0.0428

[5.96 × 103] 2.95 × 10−6 0.498 1.68 × 101 9.50 × 10−9 0.856 8.61a [177]

8 S
Z, Z

K0K0R
40/60

0.131
0.0313

[4.62 × 103] 4.35 × 10−6 0.557 [1.29 × 103] 5.42 × 10−7 0.493 8.59a
7.56b

[168]

9 S
Z, Z

K0K0R
40/60

0.185
0.0081

[3.36 × 103] 6.15 × 10−6 0.610 [2.59 × 103] 9.11 × 10−7 0.498 7.40b [166]

10 S
Z, Z

K0K0R
40/60

0.209
0.0080

[3.38 × 103] 5.87 × 10−6 0.593 [2.51 × 103] 9.10 × 10−7 0.503 7.42b [165]

ε∞ parameter is needed. Further discussion of the physical
meaning of ε∞ and ρ∞ for RRCN situations is included below.

Comparison of the 60/40 row-4 results with those of the
40/60 rows 9 and 10 shows that they involve a β value near

0.5 and one near 0.6, with the latter value close to (1 − p) for
the 40/60 one and to p for the 60/40 one. But for the 60/40
situation both values are those of dielectric KD models, while
for the 40/60 one, they both are associated with K0 resistivity-
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level models. Both models are of the same form and only differ
in the immittance level at which they are defined.

Notice that, unlike the 50/50 results of table A.1, the
inclusion of one or more cutoff U free parameters [52, 57–59]
leads to greatly improved fits in table A.2. The quantity U
is defined for a single KX model by U = ln(τmin/τ0), where
τmin is the cutoff value of the τ distribution of the model and
U is generally negative. When it is less than −40 or −50
the resulting cutoff occurs far outside the available frequency
range and no estimate of U is possible, the no-cutoff case. The
combination of ε∞ and U , as in the good 60/40 row-2 CKD
fit, is far superior to the row-1 result without U . Further, the
result of fitting with a KD model without ε∞ but including
U is appreciably worse than even the row-1 one because the
combination does not lead to non-zero ε∞ behavior.

Although the 60/40 data set shows no approach to a ρ∞
plateau of ρ ′(ν) at high frequencies, and the 40/60 one shows
no approach to a plateau of ε′(ν) at high frequencies, so
one might conclude that both the ε∞ and ρ∞ parameters are
not both explicitly present in the composite-model results of
table A.2, the situation is actually more interesting than one
might infer from these results when cutoff is present. It turns
out that individual K0 models with cutoff lead to non-zero ε∞
values and cutoff KD ones correspondingly yield non-zero ρ∞
ones [57–59].

The reason the effects of ε∞ and ρ∞ are not both
immediately evident in the 60/40 and 40/60 data sets, and in
the composite models of table A.2 that involve cutoff KD and
K0 parts, is that the effects of the rest of such composite models
obscure the plateaus arising from these individual models.
For the 60/40 situation, for example, if the effect of the C
parameter of the table A.2, row-4 CKDKD fit is subtracted
from the data, a plateau then appears in ρ ′(ν). Since cutoff
greatly improves the fits, one may conclude that its generation
of ε∞ and ρ∞ plateaus is important and that RRCN data for
either p < 0.5 or p > 0.5 actually involves the effects of
non-zero values of ρ∞ or ε∞ parameters, respectively.

A general expression for the ε∞ = εC0∞ of the K0 model
is εC0∞ = εMa[〈x−1〉0]−1, where εMa ≡ τ0σ0/εV [57, 60]. The
quantity 〈x−1〉0 is the mean of the x−1 ≡ (τ/τ0)

−1 relaxation-
time distribution and is infinite in the absence of cutoff. For the
stretched-exponential temporal response of the K0 model with
non-zero τmin cutoff, 〈x−1〉0 must be expressed in terms of an
incomplete gamma function [57], but it is accurately calculated
when needed by the LEVM fitting program [51]4. The above
relations show how U and εC0∞ are inter-related.

Figure A.2 shows that for the ε′(ν) curve of the table A.2,
row-9, 40/60 data no non-zero ε∞ appears. But from the full
response of the cutoff K0 part-b model of the composite fitting
model, both extrapolation of its results to high frequency and
the use of the above expression for εC0∞ lead to a value of
ε∞ ∼= 173.46. Thus, the high-resolution of accurate complex-
nonlinear-least-squares fitting with the LEVM program allows

4 The newest WINDOWS version, LEVMW, of the comprehensive LEVM
fitting and inversion program, as well as the MS-DOS version, may be
downloaded at no cost from http://jrossmacdonald.com. It includes an
extensive manual and executable and full source code. More information about
LEVM is provided at this website.

Figure A.2. Log–log plot of ε′(ν) and ε′′(ν) for 60/40 and 40/60
situations.

us to demonstrate the presence of a non-zero ε∞ value for the
present 40/60 data. Also note that comparison of the parameter
estimates of rows 9 and 10, included to assess statistical
variability by using entirely different individual RRCN data
sets, shows surprisingly close parameter value agreements and
strongly suggests that their β0b estimated values are close
approximations to the percolation threshold value of exactly
0.5. Further, both their β0a estimates are properly close to 0.6,
the value of the resistive proportion 1 − p here.

Next, note that the σ ′(ν) high-frequency-limiting power-
law exponent values for the conductive-system K1 and K0
models and for the dielectric-system KD models are equal
to 1 − β1, β0, and 1 − βD, respectively. Similarly, the
equivalent Davidson–Cole model (DC) exponents or log–log
slopes are 1 −γDC1, γDC0, and 1 −γDCD, respectively. Here the
γDC0 quantities in the table associated with the Z symbol are
elements of a conductive-system Davidson–Cole model while
the γDCD shape parameter apply to such a model defined at the
dielectric level and identified by E in the table. If Sσ is the
slope of the real and imaginary parts at the σ level, then Sσ −1
is that of the ε-level parts.

Figure A.2 shows the log–log behaviors of the real and
imaginary parts of ε for both the 60/40 and 40/60 situations,
and figure A.3 shows that of σ ′. We see, as expected, that the
figure A.2 row 2–4 ε results show regions of approximate −0.5
slope while the 2–9 ones are near −0.6. For the σ results of
figure A.3 the slopes of the full model curves are variable and
are shown explicitly in figure A.4. There are hardly any regions
of constant slope. The matter is made clearer, however, by the
figure A.3 σ ′ curves of the individual parts of the row 2–4 and
row 2–9 fits.

As expected, the row 2–9, 40/60 K0a slope of 0.61 is close
to the value of 1 − p for this configuration, and that of the
2–4, 60/40 KDa one, which reaches its high-frequency limit
of 1 − 0.574 = 0.426 by 108 Hz, is also close to its 1 − p
value. Figure A.3 shows that for the 60/40 configuration the
expected slope of the KDb curve, 1 − 0.511 = 0.489, is close
to the percolation threshold value of 0.5. The actual slope of
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Figure A.3. Log–log plot of σ ′(ν) for 60/40 and 40/60 situations.
The ‘a’ and ‘b’ subscripts designate the left and right parts of a
composite model fit listed in a specified row of table A.2.

the 40/60 K0b does not reach its expected value of 0.498 here
because there is insufficient length between the low and high-
frequency plateaus of this response for the limiting value to be
reached. Note that 60/40 full figure A.3 CKDaKDb response
of row 4 in table A.2, indistinguishable from the data, is much
more dominated by its cutoff KDb part than is the cutoff K 0b

part of the K0aK0b R model response.

A.3. Duality relations

Consider a new duality transformation that is important for
the present data and analysis. Instead of transforming data
expressed at, for example, the dielectric level to the resistivity
(impedance) level, just re-identify it as applying at the new
level, or vice versa! The result is of course different from
transforming the original data to the new level. Next consider
those fitting models that are of the same form at the two levels
even though they involve different DRTs. Such models are the
DCD and DC0 (including the Debye model), and the KD and
K0. Finally, we ask if a given single or composite model fits
well or exactly at one of these levels, what model applies after
re-identification of the data at the new level?

Some re-identification transformations or dualities are
KD ↔ CK0, K0 ↔ KDR, and CKD ↔ K0R. Note that for
CK0 and CKD their elements are in parallel while that of KDR
and K0R are in series. Similarly, the dual of the KDKD model
with parallel elements is the K0K0 one with its elements in
series. Further, the CKD and KDKD composite models apply
here to dielectric data, and their duals, the K0R and K0K0,
apply to conductive-system resistivity data.

Note that fits of exact KDKD data and fits of the re-
interpreted data with its dual K0K0 model involve not only
the same number of parameters but ones with exactly the same
values of the parameters with the meaning of the parameters
correspondingly re-interpreted. Although fit results for the
60/40 CKD model and the 40/60 K0R one are included in
table A.2, they there involve different data sets. The present
duality relations are different and imply that for each of these

Figure A.4. Log–log slopes of the σ ′(ν) and σ ′′(ν) responses of
specified 60/40 and 40/60 situations.

composite models there is a dual model involving the same,
but re-interpreted data. Thus, for example, the dual of a
CDCDDCD model with p/(1 − p) would be of the form,
DC0DC0R with (1 − p)/p. Therefore, all fitting results in
tables A.1 and A.2 that involve only KD, DCD, K0, and
DC0 models have duals. The applicability of the duality
transformation is not only consistent with the comparable
values of ε∞ and ρ∞ present in table A.2, but it also effectively
doubles the number of useful results of this table.

A.4. High-frequency coupling and cutoff effects

From the 60/40 row-4 values of U and τ0 = τ0b it follows
that τmin

∼= 4.95 × 10−10 s, and from νCO ≡ 1/2πτmin

one finds νCO
∼= 3.22 × 108 Hz. For comparison, from the

40/60 row-9 values of U and τ0b one obtains the slightly larger
τmin value of about 5.58 × 10−10 s. The need for cutoff for
these results, but not for those of table A.1, nominally at the
percolation threshold, indicates that it is the presence here of
percolation backbones, associated with p �= 0.5, that leads to
the difference.

As discussed in [54], for conductive-system situations
involving K1 model response, the well-known Ngai coupling
model (NCM) [52, 55], originally derived for such response,
can yield results nearly identical to the simpler and more
physically plausible cutoff model [58–60], except at high
temperatures where the NCM becomes non-physical. The
NCM model invokes a primitive relaxation time or ‘crossover’
time tC, usually taken equal to 1 or 2 ps. Since Ngai and co-
authors have also applied the NCM to polymeric and small
molecular glass formers [55, 61], it is worthwhile to investigate
its application to the present dielectric and conductive results as
well. The basic NCM relation may then be written as [56, 58]

τe/tc = (τ0/tc)
βD, (1)

where τe is the characteristic relaxation time of the Debye
response that appears at frequencies above the NCM transition
and above cutoff for the cutoff model.
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For tC = 2 ps, equation (1) yields τe = 2.89 × 10−9 s on
using the row-4 KDb values. But the cutoff model approach
of fitting a Debye model to the corresponding high-frequency-
limiting data led to τe = 1.490 × 10−9 s. When this value
is used in equation (1) to calculate an estimate of tC, one
obtains 0.515 ps, appreciably smaller than 2 ps. In contrast,
for the row-9 40/60 K0b model, equation (1) led to τe =
1.315 × 10−9 s and the cutoff model to 1.634 × 10−9 s. With
the latter value, equation (1) then leads to tc = 3.08 ps, nearly
six times larger than the 60/40 one. It follows from these
results that here tc < τmin < τe. Although it may only be
coincidental that the present RRCN cutoff parameter values
are comparable to those found for real materials, the need for
DRT cutoff of the response of RC networks demonstrated here,
just as for real materials, is of considerable significance. In
earlier work, Almond and co-authors [14, 15] have suggested
that anomalous power-law dispersion behavior found in a wide
range of materials are characteristic of microstructural RC
networks. Here we show that the analogy is indeed far more
general.

The above results also suggest that decreasing the
conductive proportion of the RRCN system decreases the
resulting primitive relaxation-time value, perhaps until it and
τe disappear for 50/50 situations but reappear for p < 0.5.
In addition, it appears, on comparing the results of figure 4(b)
of [10] with those of the present figure A.1, that increasing
the total number of network elements also decreases τe. Here
the value of tc is associated with percolation and depends on
the dielectric–conductive number ratio, but for real dielectric
systems Ngai and Capaccioli [62] state that it is determined by
the interaction potential. Nevertheless, as we have seen, the
cutoff model yields plausible results for the present 2D RRCN
structures.

It is worth remarking that in all earlier publications, such
as those of Ngai and associates, no complex-least-squares
fitting of frequency-response data has been used to estimate
NCM or cutoff U and τe values directly, as done in the present
work and to use the results to estimate tc values. Such results
are currently only made practical by using the LEVM computer
program [51]. The present results show that cutoff is needed
for all p �= 0.5 values, that a composite fitting model involving
two separate dispersive models is required for good fitting of
RRCN data, and that for any p value in its full range a pure
threshold model with a fractional power-law exponent of 0.5 is
always needed as one of the two parts of the composite model.
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